ggf Documentation
Release 0.4.0

Paul Muller

Jul 23, 2019

Contents:

Installation

Introduction

2.1 What is the package “ggf”used for?

2.2 Whatis an optical stretcher?

2.3 What is the global geometric factor?

2.4 How should I migrate my Matlab pipeline to Python?
24.1 Toreproducedatao
242 Foranewproject v v vttt e

Concept and theory

3.1 Summary e e e e

3.2 Experimentally quantifying deformation

3.3 Optical stress profile acting on a prolate spheroid
3.3.1 cos?fapproximation
3.3.2 Semi-analytical perturbation approach (Boyde et al. 2009)
3.3.3 Generalized Lorentz-Mie theory (Boyde et al. 2012)

34 Computationofthe GGF
34.1 Generalapproach e
3.4.2 Special case: cos? § approximation

3.5 Computation of compliance

Known issues

4.1 Accuracy of the mode field diameter

4.2 Method-specific differences L 0.

Code examples

5.1 Applications L e e e
5.1.1 Creep compliance analysis

5.2 Reproduction tests
5.2.1 Radial stresses of a prolate spheroid
5.2.2 Decomposition of stress in Legendre polynomials
5.2.3 Object boundary: stretching and Poisson’sratio

Code reference

6.1 module-level
6.2 matlab_funcs e

6.3 SCILIUNCS . . . o o e e e e e
6.4 SIIESS . . i e e e e e e e e e e e e e e e e e e
6.4.1 stress.boyde2009 L. e e e e
6.4.1.1 stress.boyde2009.core oL e e e e e
6.4.1.2 stress.boyde2009.globgeomfacto

Changelog
7.1 version 0.4.0 L e e e e e
7.2 version 0.3.4 . . L e e
7.3 version 0.3.3 . L. L e e e
T4 version 0.3.2 . . L L L e e e e e e
7.5 version 0.3.1 . . L L e e e e e e e
7.6 version 0.3.0 . . . L e e e e e
77 version 0.2.0 . . . L L e e e e e e
7.8 version 0.1.0 L e e e e e

8 Bilbliography

9 Indices and tables

Bibliography

Python Module Index

Index

33
33
33
33
33
34
34
34
34

35

37

39

41

43

ggf Documentation, Release 0.4.0

ggf is a Python library for computing global geometric factors and corresponding stresses acting on dielectric, elastic,
spheroidal objects in the optical stretcher. This is the documentation of ggf version 0.4.0.

Contents: 1

ggf Documentation, Release 0.4.0

2 Contents:

CHAPTER 1

Installation

ggf is written in pure Python and supports Python version 3.6 and higher.
To install ggf, use one of the following methods (package dependencies will be installed automatically):
e from PyPI: pip install ggf

e from sources: pip install . orpython setup.py install

https://pypi.python.org/pypi/ggf
https://github.com/RI-imaging/ggf

ggf Documentation, Release 0.4.0

4 Chapter 1. Installation

CHAPTER 2

Introduction

2.1 What is the package “ggf” used for?

It is a Python implementation of two Matlab scripts by Lars Boyde, StretcherNStress.m and GGF.m, which are used in
the Guck lab to compute optical stress distributions and resulting global geometric factors for dielectric, elastic, and
spheroidal objects in the optical stretcher.

2.2 What is an optical stretcher?

The optical stretcher consists of a dual beam laser trap, in its original configuration built from two opposing optical
fibers [GAM+01]. When increasing the trapping power, compliant objects such as cells are stretched along the axis of
the trap. Using video analysis, the measured shape change can be translated into physical properties of the object.

2.3 What is the global geometric factor?

The global geometric factor (GGF) connects (the unknown variable) compliance J (how easy it is to deform a body
consisting of a certain material) and (the measured variable) strain e (how much this body is deformed). Thus, the
GGF is a measure of stress (force acting on the surface of the object).

€

7= GGF

In an optical stretcher (OS) experiment, the strain e of an object can be measured by analyzing its deformation (e.g.
via a contour in the intensity image). Using object radius and the measured change in eccentricity, as well as several
parameters of the OS setup itself, ggf can be used to compute the optical stress o from which the GGF is computed.

ggf Documentation, Release 0.4.0

2.4 How should | migrate my Matlab pipeline to Python?

2.4.1 To reproduce data

You can access the computations performed in StretcherNStress.m via ggf.stress.boyde2009.core.
stress ().

Warning: There was a mistake in the original boundary function (see issue #1). This affects all cases where
poisson_ratio is non-zero. If you would like to reproduce exactly the stress profiles of StretcherNStress.m,
please use ggf version 0.2.0.

from ggf.stress.boyde2009.core import stress

theta, sigma, coeff = stress(object_index=1.366,
medium_index=1.333,
semi_minor=6.7241e-6, # [m]
poisson_ratio=0.45,
stretch_ratio=0.065,

wavelength=780e-9, # [m]
beam_waist=3.077, # [wavelengths]
power_left=.65, # [wW]
power_right=.65, # [W]
dist=175e-6 / 2, # [m]

field_approx="davis",
ret_legendre_decomp=True)

The GGF can be computed from the coefficients coeff via ggf. legendre2ggf ().

from ggf import legendre2ggf
legendre2ggf (coeff, poisson_ratio=.45)
#> 0.8555678201976592

These methods produce the same output as the original Matlab scripts with an accuracy that is below the standard
tolerance of numpy.allclose ().

2.4.2 For a new project

In general, the method ggf. get_ggf () is recommended. The difference to the above method is:

* It makes use of precomputed look-up tables (LUTSs) which avoids long computation times. The error made by
using LUTs maxes at about 1-2%.

¢ It does not make any assumptions about the Poisson’s ratio when computing the boundary function. This is a
more intuitive approach, since the optical stress should not be dependent on the Poisson’s ratio.

* The GGF is computed from 120 Legendre coefficients by default, a number that was previously determined
automatically and could have potentially been too low.

* It comes with user-convenient keyword arguments.

Please note that due to these points, the resulting GGF might vary from the GGF computed with the original Matlab
script.

import ggf
ggf.get_ggf (model="boyde2009",

(continues on next page)

6 Chapter 2. Introduction

https://github.com/GuckLab/ggf/issues/1
https://docs.scipy.org/doc/numpy/reference/generated/numpy.allclose.html#numpy.allclose

ggf Documentation, Release 0.4.0

(continued from previous page)

semi_major=7.1612e-6,
semi_minor=6.7241e-6,
object_index=1.366,
medium_index=1.333,
effective_fiber_distance=175e-6,
mode_field_diameter=4.8e-06,
power_per_fiber=.65,
wavelength=780e-9,
poisson_ratio=0.45)

#> 0.8568420867817067

[m]
[m]

[m]
[m]
[w]
[m]

2.4. How should I migrate my Matlab pipeline to Python?

ggf Documentation, Release 0.4.0

8 Chapter 2. Introduction

CHAPTER 3

Concept and theory

3.1 Summary

The computation of the compliance J for dielectric, elastic, spheroidal objects in the OS can be divided into three
main tasks: measuring the deformation w, modeling the optical stress o,., and computing the GGF from the stress.
Several approaches to these problems have been presented in the related literature and are discussed in the following.

3.2 Experimentally quantifying deformation

The deformation is quantified from video images by fitting an ellipse to the contour of the stretched object. The
deformation can then be defined as a relation between the semimajor or semiminor axes and the initial radius (or
semiaxes). Note that the prolate spheroidal shape is only an approximation to the actual shape. The methods in this
package more or less assume that this approximation is valid.

3.3 Optical stress profile acting on a prolate spheroid

The optical stress o(6) in dependence of the angle 6 is a result of the optical forces acting on the surface of the
spheroid. The angle 6 is defined in the imaging plane in a typical OS experiment, with § = 0 pointing to the right
hand fiber.

3.3.1 cos?) approximation

Ray optics is used to compute the optical stress acting on a spheroid and a ogcos26 model is fitted to the resulting
stress profile with the peak stress oo [GAM+01]. The oycos?6 approximation simplifies subsequent computations.

Note that a more general model ogcos?nf with larger exponents (e.g. n = 2,3,4,...) can also be applied, e.g. for
different fibroblast cell lines [AGW+06].

ggf Documentation, Release 0.4.0

3.3.2 Semi-analytical perturbation approach (Boyde et al. 2009)

* gaussian laser beam
* a > A: higher order perturbation theory
* [BCGO9]

3.3.3 Generalized Lorentz-Mie theory (Boyde et al. 2012)

* gaussian laser beam

* spheroidal coordinates

* generalized Lorenz—Mie theory

* not implemented (Matlab sources available upon request)

[BEWG12]

3.4 Computation of the GGF

The following derivations are based on the theoretical considerations of Lur’e [Lure64] for a rotationally symmetric
deformation of a sphere (which in general does not result in prolate spheroids) and their application to the OS by
Ananthakrishnan et al. [AGW+06]. Note that a corrigendum has been published for this article in 2008 [AGW+08].

3.4.1 General approach

The GGF connects the measured deformation to the shear modulus GG which, in OS literature, is usually written in the
form

w GGF

To G

where w is the change in radius of the stretched sphere along the stretcher axis and rg is the radius of the unstretched
sphere. Note that the quantity w/r(resembles a measure of strain along the stretcher axis.

The GGF can be computed from the radial stress o,-(6) via the radial displacement w..(r, §). These quantities can be
connected via a Legendre decomposition according to ([Lure64], chapter 6)

up(r,6) = Z [Apr" T (n+ 1) (n — 2+ 4v) + B,r" '] Py (cos 6)

n

= Z [Apr™(n+1)(n* —n — 2 = 2v) + Byr™ *n(n — 1)] Py(cos 6)

n

o (r,0)
2G

with the Legendre polynomials P,, and the Poisson’s ratio v. The coefficients A,, and B,, have to be determined from
boundary conditions. For the case of normal loading, which is given by the electromagnetic boundary conditions in
the OS (0¢y = 7.9 = 0), these coefficients compute to:

__ %
4G(1+v)
Bo=A, =B, =0

Ap =

10 Chapter 3. Concept and theory

ggf Documentation, Release 0.4.0

and forn >= 2:
Sn

A, =—
4Gry A
B — Sn, n2+2n—1+2v
" AGrT A n—1

withA=n(n—-1)+2n+1)(v+1)

Where s,, is the nth component of the Legendre decomposition of o,
o.(0) = Z Sn Py (cos@).

The radial displacement then takes the form

m) + i 22‘11 - (Ln (:0)” + M, (;)TH) P, (cos 9)1

n=2

up(r,0) = 7o

G

with the coefficients L,, and M,, given in [Lure64], chapter 6.6. We measure the displacement at the outer perimeter
of the stretched sphere and on the stretcher axis only; Thus, we set r = r and § = 0 with w = u,.(rg, 0).

To obtain the GGF, we finally compute

GGF = gur (ro,0)
To

(1—-20)80 ~= 25,
L= s L, +M,)P .
2(1+v) +;2n+1(n + Mn) Pn(cos f)

Notes:

* Due to the fact hat the stress profile in the OS is rotationally symmetric w.r.t. the stretcher axis, all odd coeffi-
cients s,, are zero.

* The polar displacement ug has been omitted here, because it does not represent a quantity measurable in an OS
experiment.

3.4.2 Special case: cos® § approximation

Following the above approach, the stress profile
o,(0) = g cos 6
with the peak stress oy can be decomposed into two Legendre polynomials

o (0) = soPo(cosB) + sa Pa(cos)

1
S = 500

2
S9 = gCT()

Inserting these Legendre coefficients in the above equation for the GGF yields

GGF — 70 {1 ((1_21/)+(—7+4V)(1+V)>+(7—4V)(1+1/) cos28]

20+v) |3 7+ 5v 7+ 5v
Historically, the relation between strain, stress, and shear modulus was written in the form

w O'()FG

To G

with the geometrical factor F that does not include the peak stress oy. Hence the term “global geometrical factor”
GGF = ¢ OFG-

3.4. Computation of the GGF 11

ggf Documentation, Release 0.4.0

3.5 Computation of compliance
A typical OS experiment records the deformation w(t) over time ¢. The quantity of interest is the (creep) compliance
J(t). With J = 1/G, it computes to

w(t) 1
‘ro GGF(t)

J(t) =

Note that the GGF is now time-dependent, because the optical stress profile o, from which the GGF is computed,
also depends on the deformation.

12 Chapter 3. Concept and theory

CHAPTER 4

Known issues

4.1 Accuracy of the mode field diameter

The mode field diameter (MFD) is an important parameter for the computation of the GGF (see ggf.get_ggf ()).
Manufacturers often list the mode field diameters with large error margins and only for a single wavelength (e.g. 5.0
+ 0.5 pm @ 850nm for a THORLABS 780HP). Thus, an accurate value of the MFD is not given, especially for other
wavelengths.

According to thorlabs (personal communication), the MFD is not a directly measured value, but a function of wave-
length, core radius and the refractive indices of the core and the cladding. The measurement of MFD is accomplished
by the Variable Aperture Method in the Far Field (VAMFF). An aperture is placed in the far field of the fiber output,
and the intensity is measured. As successively smaller apertures are placed in the beam, the intensity levels are mea-
sured for each aperture; the data can then be plotted as power vs. the sine of the aperture half-angle (or the numerical
aperture). The MFD is then determined using Petermann’s second definition, which is a mathematical model that does
not assume a specific shape of power distribution. The MFD in the near field can be determined from this far-field
measurement using the Hankel Transform.

Thus, there are several sources of error that are propagated to the MFD. It would probably be best to directly measure
the MFD and investigate how its measurement error propagates to the GGF. To our knowledge, this has not yet been
done.

4.2 Method-specific differences

For some parameter combinations, the methods in [BCG09] and [BEWG12] yield very different stress profile shapes
(data not shown). It has not yet been investigated how these differences affect the GGF and whether they can be
explained by the fact that the generalized Lorentz-Mie theory approach is simply more accurate.

13

https://www.thorlabs.de/thorProduct.cfm?partNumber=780HP

ggf Documentation, Release 0.4.0

14 Chapter 4. Known issues

20

21

22

23

CHAPTER B

Code examples

5.1 Applications

5.1.1 Creep compliance analysis

This example uses the contour data of an HL60 cell in the OS to compute its GGF and creep compliance. The contour
data were determined from this phase-contrast video (prior to video compression). During stretching, the total laser
power was increased from 0.2W to 1.3W (reflexes due to second harmonic effects appear as white spots).

creep_compliance.py

import ggf

import h5py

import 1lmfit

import matplotlib.pylab as plt
import numpy as np

def ellipse_fit (radius, theta):
""'Fit a centered ellipse to data in polar coordinates

Parameters
radius: 1d ndarray
radial coordinates
theta: 1d ndarray
angular coordinates [rad]

Returns

a, b: floats
semi-axes of the ellipse; "a’ 1s aligned with theta=0.

rrr

def residuals (params, radius, theta):

(continues on next page)

15

_static/creep_compliance_data.h5
_static/creep_compliance_data.h5
_static/creep_compliance.mp4

ggf Documentation, Release 0.4.0

ellipse fit semi-axes

GGF

8.6 \\,mw . 0.808 -
1]
= 0.806 -
E B.5 5
5 Nﬁ'l"" E 0.804
4 B4 4 — semi-major axis E 080z 4
= semi-minor axis o
E E 0.800
B3
= & 0.798 -
3 °
8.2 A 2 0.796
|
Jﬁ_,-r"‘ WW 0794
T T T T T T T T
0 1 2 3 4 5 B 0 2 3 4 5 6 7
time [s] time [s]
strain creep compliance
2.0 0.025 -
- T 0.020 -
= - 1]
£
E X 0.015
b N o
=] i
B £ 0.010 -
E 0.5 2
[=]
T o 0.005
0.0
N/v\] 0.000 -
T T T T T T T T T
0 1 2 3 4 5 B 0 2 3 4 5 6 7
time [s] time [s]
16 Chapter 5. Code examples

24

25

26

27

28

29

30

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

3

74

75

76

77

78

79

80

ggf Documentation, Release 0.4.0

(continued from previous page)

a = params["a"].value

b params["b"] .value

r = a*b / np.sgrt(a**2 % np.sin(theta)**2 + b**x2 » np.cos(theta)«*2)
return r - radius

parms = lmfit.Parameters ()

parms.add (name="a", value=radius.mean())

parms.add (name="b", value=radius.mean())

res = lmfit.minimize (residuals, parms, args=(radius, theta))
return res.params(["a"].value, res.params|["b"].value

load the contour data (stored in polar coordinates)
with hbpy.File("data/creep_compliance_data.h5", "r") as hb5:

radius = h5["radius"][:] * le-6 # [um] to [m]
theta = h5["theta"][:]

time = h5["time"][:]

meta = dict (h5.attrs)

factors = np.zeros(len(radius), dtype=float)
semimaj = np.zeros(len(radius), dtype=float)
semimin = np.zeros(len(radius), dtype=float)
strains = np.zeros(len(radius), dtype=float)
complnc = np.zeros(len(radius), dtype=float)

for ii in range(len(radius)):
determine semi-major and semi-minor axes
smaj, smin = ellipse_fit (radius([ii], theta[ii])
semimaj[ii] = smaj
semimin[ii] = smin
compute GGF
if (time[ii] > meta["time_stretch_begin [s]"]
and time[ii] < meta["time_stretch_end [s]"]):
power_per_fiber = meta["power_per_ fiber stretch [W]"]
f = ggf.get_ggf(
model="boyde2009",
semi_major=smaj,
semi_minor=smin,
object_index=meta["object_index"],
medium_index=meta["medium_index"],
effective_fiber_ distance=meta["effective fiber_ distance [m]"],

mode_field_diameter=meta["mode_field_diameter [m]"],
power_per_fiber=power_per_ fiber,
wavelength=meta["wavelength [m]"],

poisson_ratio=.5)
else:
power_per_fiber = meta["power_per_ fiber_trap [W]"]
f = np.nan
factors([ii] = £

compute compliance

strains = (semimaj-semimaij[0]) / semimaj[0]
complnc = strains / factors
compl_ival = (time > meta["time_stretch_begin [s]"]) * \

(continues on next page)

5.1. Applications 17

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

ggf Documentation, Release 0.4.0

(continued from previous page)

(time < meta["time stretch end [s]"])
stretch_index = np.where (compl_ival) [0][0]
complnc_1 = strains/factors[stretch_index]

plots
plt.figure(figsize=(8, 7))

axl = plt.subplot (221, title="ellipse fit semi-axes")
axl.plot (time, semimajxle6, label="semi-major axis")
axl.plot (time, semiminxle6, label="semi-minor axis")
axl.legend()

axl.set_xlabel ("time [s]")

axl.set_ylabel ("axis radius [pm]")

ax2 = plt.subplot (222, title="GGE")

ax2.plot (time, factors)

ax2.set_xlabel ("time [s]")

ax2.set_ylabel ("global geometric factor [Pal]")

ax3 = plt.subplot (223, title="strain")
ax3.plot (time, (strains)=100)

ax3.set_xlabel ("time [s]")

ax3.set_ylabel ("deformation Sw(t)/r_0S$ [%]")

ax4 = plt.subplot (224, title="creep compliance™)
ax4.plot (time[compl_ival], complnc[compl_ivall])
ax4d .set_xlabel ("time [s]")

ax4d.set_ylabel ("compliance $J(t)S$ [Pa']™)

for ax in [axl, ax2, ax3, ax4]:
ax.set_x1im(0, np.round(time.max()))
ax.axvline (x=meta["time_stretch_begin [s]"], c="r")
ax.axvline (x=meta["time_stretch_end [s]"], c="r")

plt.tight_layout ()
plt.show ()

5.2 Reproduction tests

5.2.1 Radial stresses of a prolate spheroid

This examples computes radial stress profiles for spheroidal objects in the optical stretcher, reproducing figures (9)
and (10) of [BCGO09].

stress_reproduced.py

import matplotlib.pylab as plt
import numpy as np
import percache

from ggf.stress.boyde2009.core import stress

@percache.Cache ("stress_reproduced.cache", livesync=True)
P

(continues on next page)

18 Chapter 5. Code examples

20

21

22

23

24

25

26

27

28

29

ggf Documentation, Release 0.4.0

0= 0=
120° &0 120 B0=
150 30° 150 30°
4.5 4.5
3.0 3.0
5
210= 330° 210= 330°
240° 300= 240" 300¢
270" 270"
0= 0=
120° B0* 120° B0*
150° 30° 150% 30°
12 54 4.5
210= 330° 210= 330°
240° 300° 240° 300
" 270"

0=
120% a0

[
150¢ 30
45
3.0
210= 330°

2407 300%
2707

a0
120%

{v]
B0®
150° 30=
1.8
A
=g

180" == 0

210+ 330¢

2407

300%
270°

(continued from previous page)

def compute (x*kwargs) :
"Locally cached version of ggf.core.stress"
return stress (xxkwargs)

variables from the publication
alpha = 47

wavelength = 1064e-9

radius = alpha * wavelength / (2 * np.pi)
{"stretch_ratio": .1,

1.375,
"medium_index": 1.335,
"wavelength": wavelength,
"beam_waist": 3,

kwargs =
"object_index":

"semi_minor":
"power_left": 1,
"power_right": 1,
"poisson_ratio": O,
"n_points": 200,

}

radius,

kwargsl = kwargs.copy ()
kwargsl["power_right"] = 0
kwargsl["stretch_ratio"] = 0
kwargsl["dist"] = 90e-6

kwargs2 = kwargs.copy ()

(continues on next page)

5.2. Reproduction tests

19

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

63

64

66

67

69

70

71

72

73

74

75

76

77

78

79

90

91

92

93

ggf Documentation, Release 0.4.0

(continued from previous page)

(@]

kwargs2 ["power_right"] =
kwargs2["stretch_ratio"] = .05
kwargs2["dist"] = 90e-6

kwargs3 = kwargs.copy ()
kwargs3["power_right"] =
kwargs3["stretch _ratio"] = .1
kwargs3(["dist"] = 90e-6

(@]

kwargs4 = kwargs.copy ()
kwargs4 ["dist"] = 60e-6

kwargsb = kwargs.copy ()
kwargs5["dist"] = 120e-6

kwargs6 = kwargs.copy ()
kwargs6["dist"] = 200e-6

polar plots
plt.figure(figsize=(8, 5))

thl, sigmal = compute (xxkwargsl)

axl = plt.subplot (231, projection='polar')
axl.plot (thl, sigmal, "k")

axl.plot (thl + np.pi, sigmalf[::-1], "k")

th2, sigma2 = compute (xxkwargs2)

ax2 = plt.subplot (232, projection='polar')
ax2.plot (th2, sigma2, "k")

ax2.plot (th2 + np.pi, sigma2[::-1], "k")

th3, sigma3 = compute (*x*kwargs3)

ax3 = plt.subplot (233, projection='polar')
ax3.plot (th3, sigma3, "k")

ax3.plot (th3 + np.pi, sigma3[::-1], "k")

for ax in [axl, ax2, ax3]:
ax.set_rticks ([0, 1.5, 3, 4.51])
ax.set_rlim(0, 4.5)

th4, sigmad4 = compute (*x+kwargsé)

ax4 = plt.subplot (234, projection='polar')
ax4.plot (th4, sigma4, "k")

ax4.plot (thd4 + np.pi, sigmad[::-1], "k")
ax4.set_rticks ([0, 4, 8, 12])
ax4.set_rlim(0, 12)

th5, sigmab = compute (xxkwargs5h)

ax5 = plt.subplot (235, projection='polar')
ax5.plot (th5, sigmab, "k")

ax5.plot (th5 + np.pi, sigmab5[::-1], "k")
ax5.set_rticks ([0, 1.5, 3, 4.51)
ax5.set_rlim(0, 4.5)

th6, sigma6 = compute (xxkwargso6)
ax6 = plt.subplot (236, projection='polar')

(continues on next page)

20

Chapter 5. Code examples

94

95

96

97

98

99

100

101

102

103

20

21

22

23

24

25

26

27

28

29

ggf Documentation, Release 0.4.0

(continued from previous page)

ax6.plot (th6, sigma6, "k")

ax6.plot (th6é + np.pi, sigma6[::-1], "k")
ax6.set_rticks ([0, 0.6, 1.2, 1.8])
ax6.set_rlim(0, 1.8)

for ax in [axl, ax2, ax3, ax4, ax5, axo6]:
ax.set_thetagrids (np.linspace (0, 360, 12, endpoint=False))

plt.tight_layout ()
plt.show ()

5.2.2 Decomposition of stress in Legendre polynomials

To compute the GGF, ggf .globgeomfact.coeff2ggf () uses the coefficients of the decomposition of the stress
into Legendre polynomials P, (cos(f)). This example visualizes the small differences between the original stress and
the stress computed from the Legendre coefficients. This plot is automatically produced by the original Matlab script
StretcherNStress.m.

Note that the original Matlab yields different results for the same set of parameters, because the Poisson’s ratio (key-
word argument poisson_ratio) is non-zero; see issue #1.

stress_decomposition.py

import matplotlib.pylab as plt
import numpy as np
import percache

from ggf.sci_funcs import legendrePlm
from ggf.stress.boyde2009.core import stress

@percache.Cache ("stress_decomposition.cache", livesync=True)
def compute (x*kwargs) :

"Locally cached version of ggf.core.stress"

return stress (xxkwargs)

compute default stress
theta, sigmarr, coeff = compute (ret_legendre_decomp=True,
n_points=300)

compute stress from coefficients
numpoints = theta.size
sigmarr_c = np.zeros ((numpoints, 1), dtype=float)
for ii in range (numpoints) :
for jj, cc in enumerate (coeff):
sigmarr_c[ii] += coeff[jj] = \
np.real_1if close(legendrePlm (0, jj, np.cos(thetal[ii])))

polar plot

plt.figure(figsize=(8, 8))

ax = plt.subplot (111, projection="polar")

plt.plot (theta, sigmarr, '-b', label="computed stress")

plt.plot (theta + np.pi, sigmarr[::-1], '-b")

plt.plot (theta, sigmarr_c, ':r', label="from Legendre coefficients")

(continues on next page)

5.2. Reproduction tests 21

https://github.com/GuckLab/ggf/issues/1

ggf Documentation, Release 0.4.0

a0«

— computed stress
from Legendre coefficients

180° e

270#

22 Chapter 5. Code examples

33

35

36

ggf Documentation, Release 0.4.0

(continued from previous page)

plt.plot (theta + np.pi, sigmarr_c[::-1], ':xr')
plt.legend()

plt.tight_layout ()
plt.show()

5.2.3 Object boundary: stretching and Poisson’s ratio

This example illustrates how the parameters Poisson’s ratio v and stretch ratio € influence the object boundary used in
ggf.core.stress () and defined in ggf . core.boundary ().

Note that the boundary function was not defined correctly prior to version 0.3.0 (issue #1). Since version 0.3.0, the
semi-minor axis is equivalent to the keyword argument a (1 by default).

900

e=0.00, v=0 QﬁﬂB
e=0.05, v=0

130* e=0.10, v=0 0« 180° 0

€=0.15, v=0
=020, v=0

2707 2707

boundary.py

import numpy as np
import matplotlib.pylab as plt

from ggf.stress.boyde2009.core import boundary

theta = np.linspace (0, 2+np.pi, 300)
costheta = np.cos(theta)

change epsilon
eps = [.0, .05, .10, .15, .20]
bls [1]
for ep in eps:
bls.append (boundary (costheta=costheta,
epsilon=ep,
nu=.0))

change Poisson's ratio

(continues on next page)

5.2. Reproduction tests 23

https://github.com/GuckLab/ggf/issues/1

ggf Documentation, Release 0.4.0

(continued from previous page)

nus = [.0, .25, .5]
b2s = []
for nu in nus:

b2s.append (boundary (costheta=costheta,

plot
plt.figure (figsize=(8,

axl = plt.subplot (121,
for ep, bi in zip(eps,

axl.plot (theta, bi,

axl.legend()

ax2 = plt.subplot (122,
for nu, bi in zip(nus,

ax2.plot (theta, bi,

ax2.legend()

plt.tight_layout ()
plt.show ()

epsilon=.1,
nu=nu))

4))

projection="polar")
bls) :
label="={:.2f}, v=0".format (ep))

projection="polar")
b2s):

label="=.1, v={:.1f}".format (nu))

24

Chapter 5. Code examples

CHAPTER O

Code reference

6.1 module-level

ggf.fiber_distance_capillary (gel_thickness=2e-06, glass_thickness=4e-05, channel_width=4e-

05, gel_index=1.449, glass_index=1.474, medium_index=1.335)
Effective distance between the two optical fibers

When the optical stretcher is combined with a microfluidic channel (closed setup), then the effective distance
between the two optical fibers (with the the stretched object at the channel center) is defined by the refractive in-
dices of the optical components: index matching gel between fiber and channel wall, microfluidic glass channel
wall, and medium inside the channel.

Parameters

* gel_thickness (f1oat)- Thickness of index matching gel (distance between fiber and
glass wall) [m]

* glass_thickness (float)— Thickness of glass wall [m]

* channel_width (f1oat)— Width of the microfluidic channed [m]

* gel_index (f1oat) — Refractive index of index matching gel

* glass_index (f1oat) — Refractive index of channel glass wall

e medium_index (float)— Refractive index of index medium inside channel
Returns eff_dist — Effective distance between the fibers

Return type float

Notes

The effective distance is computed relative to the medium, i.e. if gel_index == glass_index == medium_index,
then eff_dist = 2*‘gel_dist‘ + 2*‘glass_dist* + channel_width.

25

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

ggf Documentation, Release 0.4.0

ggf.get_ggf (model, semi_major, semi_minor, object_index, medium_index, effec-
tive_fiber_distance=0.0001, mode_field_diameter=3e-06, power_per_fiber=0.6,

wavelength=1.064e-06, poisson_ratio=0.5, n_poly=120, use_lut=None, verbose=False)
Model the global geometric factor

Parameters
* model (str)— Model to use, one of: boyde2009
* semi_major (float)— Semi-major axis of an ellipse fit to the object perimeter [m]
* semi_minor (f1oat)— Semi-minor axis of an ellipse fit to the object perimeter [m]
* object_index (f1oat)— Refractive index of the object
* medium_index (float)— Refractive index of the surrounding medium

* effective_fiber_ distance (float)-Effective distance between the two trapping
fibers relative to the medium refractive index [m]. For an open setup, this is the physical
distance between the fibers. For a closed setup (capillary), this distance takes into account
the refractive indices and thicknesses of the glass capillary and index matching gel. For the
closed setup, the convenience function ggf. fiber. distance_capillary () canbe
used.

e mode_field_diameter (float) — The mode field diameter MFD of the fiber used
[m]. Note that the MFD is dependent on the wavelength used. If the manufacturer did
not provide a value for the MFD, the MFD can be approximated as 3wavelenth for a
single-mode fiber.

* power_per_fiber (float)— The laser power coupled into each of the fibers [W]
* wavelength (f1oat)— The laser wavelength used for the trap [m]

* poisson_ratio (float)— The Poisson’s ratio of the stretched material. Set this to 0.5
for volume conservation.

* n_poly (int) — Number of Legendre polynomials to use for computing the GGF. Note
that only even Legendre polynomials are used and thus, this number is effectively halved.
To reproduce the GGF as computed with the Boyde2009 Matlab script, set this value to
None.

* use_lut (None, str, pathlib.Path or bool) — Use look-up tables to com-
pute the GGF. If set to None, the internal LUTs will be used or the GGF is computed if it
cannot be found in a LUT. If True, the internal LUTs will be used and a NotInLUTError will
be raised if the GGF cannot be found there. Alternatively, a path to a LUT hdf5 file can be
passed.

* verbose (int) — Increases verbosity
Returns ggf — global geometric factor
Return type float

ggf .legendre2ggf (coeff, poisson_ratio)
Compute the global geometric factor from Legendre coefficients

The definition of the Legendre coefficients is given in the theory section.
Parameters
* coeff (1d ndarray) - Legendre coefficients as defined in [Lure64]

e poisson_ratio (float) — Poisson’s ratio of the stretched material. Set this to 0.5 for
volume conservation.

26 Chapter 6. Code reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

ggf Documentation, Release 0.4.0

Returns ggf — Global geometric factor

Return type float

Notes
All odd Legendre coefficients are assumed to be zero, because the stress profile is symmetric with respect to the
stretcher axis.

ggf.stress2ggf (stress, theta, poisson_ratio, n_poly=120)
Compute the GGf from radial stress using Legendre decomposition

Parameters
* stress (Id ndarray)— Radial stress profile (in imaging plane)
* theta (1d ndarray)— Polar angles corresponding to stress

e poisson_ratio (float) — Poisson’s ratio of the stretched material. Set this to 0.5 for
volume conservation.

* n_poly (int)— Number of Legendre polynomials to use
Returns ggf — Global geometric factor

Return type float

Notes

All odd Legendre coefficients are assumed to be zero, because the stress profile is symmetric with respect to the
stretcher axis. Therefore, only n_poly/2 polynomials are considered.

ggf.stress2legendre (stress, theta, n_poly)
Decompose stress into even Legendre Polynomials

The definition of the Legendre decomposition is given in the theory section.
Parameters
* stress (Id ndarray) - Radial stress profile (in imaging plane)
* theta (1d ndarray) — Polar angles corresponding to stress
* n_poly (int)— Number of Legendre polynomials to use
Returns coeff — Legendre coefficients as defined in [Lure64]

Return type 1d ndarray

Notes

All odd Legendre coefficients are assumed to be zero, because the stress profile is symmetric with respect to the
stretcher axis. Therefore, only n_poly/2 polynomials are considered.

6.2 matlab_funcs

Special functions translated from Matlab to Python

6.2. matlab_funcs 27

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

ggf Documentation, Release 0.4.0

ggf.matlab_funcs.besselh (n, z)
Hankel function with k = 1

Parameters
* n (int)—real order

* z (float)— complex argument

Notes

https://de.mathworks.com/help/matlab/ref/besselh.html

ggf.matlab_funcs.bessel] (n,7)
Bessel function of first kind

Parameters
* n (int)—real order

* z (float)— complex argument

Notes

https://de.mathworks.com/help/matlab/ref/besselj.html

ggf.matlab_funcs.gammaln (x)
Logarithm of the absolute value of the Gamma function

Notes

https://de.mathworks.com/help/matlab/ref/gammaln.html
See also:
scipy.special.gammaln ()

ggf.matlab_funcs.legendre (7, x)
Associated Legendre functions

Parameters
* n (int)—degree

* x (ndarray of floats)- argument

Notes

X is treated always as a row vector

The statement legendre(2,0:0.1:0.2) returns the matrix

/ x=0 x=0.1] x=0.2
m=0 | -0.5000 | -0.4850 | -0.4400
m=11]0 -0.2985 | -0.5879
m=2 | 3.0000 | 2.9700 2.8800

28

Chapter 6

. Code reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://de.mathworks.com/help/matlab/ref/besselh.html
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://de.mathworks.com/help/matlab/ref/besselj.html
https://de.mathworks.com/help/matlab/ref/gammaln.html
https://docs.python.org/3/library/functions.html#int

ggf Documentation, Release 0.4.0

Notes

https://de.mathworks.com/help/matlab/ref/legendre.html

ggf.matlab_funcs.lscov (A, B, w=None)
Least-squares solution in presence of known covariance

A -z = B, that is, x minimizes (B — A -)T - diag(w) - (B — A - x). The matrix w typically contains either

counts or inverse variances.
Parameters
* A(matrix or 2d ndarray) - input matrix

* B(vector or 1d ndarray) - input vector

Notes

https://de.mathworks.com/help/matlab/ref/Iscov.html

ggf.matlab_funcs.quadl (func, a, b)
Numerically evaluate integral with scipy QUADPACK quadrature

Parameters
* func (callable) - function to integrate
e a (float)—interval start

* b (float)-interval end

Notes

https://de.mathworks.com/help/matlab/ref/quadl.html

6.3 sci_funcs

Other scientific functions

ggf.sci_funcs.legendrePlm (m, [, x)

6.4 stress

ggf.stress.get_stress (model, semi_major, semi_minor, object_index, medium_index,
effective_fiber_distance=0.0001, mode_field_diameter=23e-06,
power_per_fiber=0.6, wavelength=1.064¢-06, n_points=100, ver-

bose=False)
Compute the optical stress profile in the optical stretcher

Parameters
* model (st r)— Model to use, one of: boyde2009
* semi_major (float)— Semi-major axis of an ellipse fit to the object perimeter [m]

* semi_minor (f1oat) - Semi-minor axis of an ellipse fit to the object perimeter [m]

6.3. sci_funcs

29

https://de.mathworks.com/help/matlab/ref/legendre.html
https://de.mathworks.com/help/matlab/ref/lscov.html
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://de.mathworks.com/help/matlab/ref/quadl.html
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

ggf Documentation, Release 0.4.0

* object_index (f1oat)— Refractive index of the object
* medium_index (float)— Refractive index of the surrounding medium

* effective_fiber_distance (float)-Effective distance between the two trapping
fibers relative to the medium refractive index [m]. For an open setup, this is the physical
distance between the fibers. For a closed setup (capillary), this distance takes into account
the refractive indices and thicknesses of the glass capillary and index matching gel. For the
closed setup, the convenience function ggf. fiber. distance_capillary () canbe
used.

e mode_field_diameter (float) — The mode field diameter MFD of the fiber used
[m]. Note that the MFD is dependent on the wavelength used. If the manufacturer did
not provide a value for the MFD, the MFD can be approximated as 3«wavelenth for a
single-mode fiber.

* power_per_fiber (float) - The laser power coupled into each of the fibers [W]
* wavelength (f1oat)— The laser wavelength used for the trap [m]
* n_points (int)— Number of points to compute.
* verbose (int) - Increases verbosity
Returns
* theta (1d ndarray of length n_points) — Polar angles [rad]

 sigma (1d ndarray of length n_points) — Radial stress profile along theta [Pa]

6.4.1 stress.boyde2009

6.4.1.1 stress.boyde2009.core

ggf.stress.boyde2009.core.boundary (costheta, a=1, epsilon=0.1, nu=0)

Projected boundary of a prolate spheroid

Compute the boundary according to equation (4) in [BCGO09] with the addition of the Poisson’s ratio of the
object.

B(#)=a(l+e€)[(1+€)?—e(l+v)(2+4 €l —v))cos® 0] 1/
This boundary function was derived for a prolate spheroid under the assumption that the semi-major axis a and
the semi-minor axes b = c are defined as

1+e¢
1—ve

a =

The boundary function B(#) can be derived with the above relation using the equation for a prolate spheroid.
Parameters

* costheta(float or np.ndarray)- Cosine of polar coordinates # at which to com-
pute the boundary.

* a (float) - Equatorial radii of prolate spheroid (semi-minor axis).

* epsilon (float) — Stretch ratio; defines size of semi-major axis: a = (1 + €)b. Note
that this is not the eccentricity of the prolate spheroid.

* nu (float) - Poisson’s ratio v of the material.

Returns B - Radial object boundary in dependence of theta B(6).

30

Chapter 6. Code reference

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

ggf Documentation, Release 0.4.0

ggf.

ggf.

Return type 1d ndarray

For v = 0, the above equation becomes equation (4) in [BCGO09].

stress.boyde2009.core.get_hgc
Load hypergeometric coefficients from hypergeomdataZ2.dat.

These coefficients were computed by Lars Boyde using Wolfram Mathematica.

stress.boyde2009.core.stress (object_index=1.41, medium_index=1.3465,
poisson_ratio=0.45, semi_minor=2.8466e-06,
stretch_ratio=0.1, wavelength=7.8e-07, beam_waist=3,
power_left=0.6, power_right=0.6, dist=0.0001,
n_points=100, theta_max=<Mock name="mock.pi’
id="139712603256424">, field_approx="davis’,

ret_legendre_decomp="False, verbose=False)

Compute the stress acting on a prolate spheroid
The prolate spheroid has semi-major axis a and semi-minor axis b = c.

Parameters

* object_index (f1oat)— Refractive index of the spheroid

* medium_index (float)— Refractive index of the surrounding medium

* poisson_ratio (float)— Poisson’s ratio of the spheroid material

* semi_minor (f1oat)— Semi-minor axis (inner) radius of the stretched object b = c.
* stretch_ratio (float)— Measure of the deformation, defined as (a — b) /b
* wavelength (f1oat)— Wavelenth of the gaussian beam [m]

* beam waist (float)— Beam waist radius of the gaussian beam [wavelengths]
* power_left (float)— Laser power of the left beam [W]

* power_right (float)— Laser power of the right beam [W]

* dist (float)— Distance between beam waist and object center [m]

* n_points (int)— Number of points to compute stresses for

* theta_max (f1oat) - Maximum angle to compute stressed for

* field_approx (str)-TODO

* ret_legendre_ decomp (bool)-If True, return coefficients of decomposition of stress
into Legendre polynomials

* verbose (int) - Increase verbosity

Returns

* theta (/d ndarray) — Angles for which stresses are computed
 sigma_rr (/d ndarray) — Radial stress corresponding to angles

 coeff (I1d ndarray) — If ret_legendre_decomp is True, return compositions of decomposition
of stress into Legendre polynomials.

6.4. stress

31

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

ggf Documentation, Release 0.4.0

Notes

» The angles theta are computed on a grid that does not include zero and theta_max.

* This implementation was first presented in [BCG09].

6.4.1.2 stress.boyde2009.globgeomfact

Computation of the global geometric factor

ggf.stress.boyde2009.globgeomfact .coeff2ggf (coeff, poisson_ratio=0.45)
Compute the global geometric factor from stress coefficients

The radial displacements of an elastic sphere can be expressed in terms of Legendre polynomials (see [Lure64]
equation 6.2.9) whose coefficients are computed from the Legendre decomposition of the radial stress.

Notes

* For a o cos™(0) stress profile, the GGF already includes the peak stress according to:

GGF = 0'0F(‘,.

* This is a conversion of the Matlab script GGF.m to Python. The code solves a linear system of equations
to determine all Legendre coefficients. The new implementation in ggf. legendre2ggf () uses the
direct solution and thus should be preferred.

32 Chapter 6. Code reference

CHAPTER /

Changelog

List of changes in-between ggf releases.

7.1 version 0.4.0

* fix: reproduce stretch ratio warning when using LUT

* enh: updated LUT computation for FUS droplets

 enh: update sge/distributed computation with LUT scripts
* docs: improve docstrings and examplse in docs

* setup: added basic LUTs to repository

* minor code cleanup

7.2 version 0.3.4

¢ maintenance release

7.3 version 0.3.3

 update documentation

7.4 version 0.3.2

 update documentation

33

ggf Documentation, Release 0.4.0

7.5 version 0.3.1

* code cleanup and minor documentaion update

7.6 version 0.3.0

* add look-up table for cells (distribution on PyPI only)

* fix: mistake in boundary function in boyde2009 stress computation due to mix-up of “inner radius” and “initial
radius”, affects only non-zero values of Poisson’s ratio (#1)

7.7 version 0.2.0

BREAKING CHANGES:
— ref: changed submodule imports, please revise your scripts

- ref: move computation of stress to stress.boyde2009 submodule

feat: added support for GGF look-up tables Note that an experimental look-up table is already included in the
release on PyPI, but not yet in the source tree.

* feat: analytical computation of GGF from Legendre polynomials
* globgeomfact.coeff2ggf returned complex instead of float

* docs: add preliminary theoretical part

7.8 version 0.1.0

e initial version

34 Chapter 7. Changelog

https://github.com/GuckLab/ggf/issues/1

CHAPTER 8

Bilbliography

35

ggf Documentation, Release 0.4.0

36 Chapter 8. Bilbliography

CHAPTER 9

Indices and tables

* genindex
* modindex

e search

37

ggf Documentation, Release 0.4.0

38 Chapter 9. Indices and tables

Bibliography

[AGW+06]

[AGW+08]

[BCGO9]

[BEWGI12]

[GAM+01]

[Lure64]

Revathi Ananthakrishnan, Jochen Guck, Falk Wottawah, Stefan Schinkinger, Bryan Lincoln, Maren
Romeyke, Tess Moon, and Josef Kis. Quantifying the contribution of actin networks to the elastic strength
of fibroblasts. Journal of Theoretical Biology, 242(2):502-516, sep 2006. doi:10.1016/].jtb1.2006.03.021.

Revathi Ananthakrishnan, Jochen Guck, Falk Wottawah, Stefan Schinkinger, Bryan Lincoln, Maren
Romeyke, Tess Moon, and Josef Kis. Corrrigendum to “quantifying the contribution of actin net-
works to the elastic strength of fibroblasts”. Journal of Theoretical Biology, 255(1):162, nov 2008.
doi:10.1016/}.jtbi.2008.08.004.

Lars Boyde, Kevin J. Chalut, and Jochen Guck. Interaction of gaussian beam with near-spherical particle:
an analytic-numerical approach for assessing scattering and stresses. Journal of the Optical Society of
America A, 26(8):1814, jul 2009. doi:10.1364/josaa.26.001814.

Lars Boyde, Andrew Ekpenyong, Graeme Whyte, and Jochen Guck. Comparison of stresses on homo-
geneous spheroids in the optical stretcher computed with geometrical optics and generalized lorenz—mie
theory. Applied Optics, 51(33):7934, nov 2012. doi:10.1364/20.51.007934.

Jochen Guck, Revathi Ananthakrishnan, Hamid Mahmood, Tess J. Moon, C. Casey Cunningham, and
Josef Kis. The optical stretcher: a novel laser tool to micromanipulate cells. Biophysical Journal,
81(2):767-784, aug 2001. doi:10.1016/s0006-3495(01)75740-2.

A.I Lur’e. Three dimensional problems of the theory of elasticity. Wiley, 1964.

39

https://doi.org/10.1016/j.jtbi.2006.03.021
https://doi.org/10.1016/j.jtbi.2008.08.004
https://doi.org/10.1364/josaa.26.001814
https://doi.org/10.1364/ao.51.007934
https://doi.org/10.1016/s0006-3495(01)75740-2

ggf Documentation, Release 0.4.0

40 Bibliography

Python Module Index

ggf.matlab_funcs, 27

ggf.sci_funcs,?29
ggf.stress.boyde2009.core, 30
ggf.stress.boyde2009.globgeomfact, 32

41

ggf Documentation, Release 0.4.0

42 Python Module Index

Index

B

besselh () (in module ggf.matlab_funcs), 27
bessel] () (in module ggf.-matlab_funcs), 28
boundary () (in module ggf.stress.boyde2009.core), 30

C

coeff2ggf () (in module
ggf-stress.boyde2009.globgeomfact), 32

F

fiber_distance_capillary () (in module ggf),
25

G

gammaln () (in module ggf-matlab_funcs), 28
get_ggf () (in module ggf), 25
get_hgc (in module ggf.stress.boyde2009.core), 31
get_stress () (in module ggfstress), 29
ggf.matlab_funcs (module), 27
ggf.sci_funcs (module), 29
ggf.stress.boyde2009.core (module), 30
ggf.stress.boyde2009.globgeomfact (mod-
ule), 32

L

legendre () (in module ggf.matlab_funcs), 28
legendre2ggf () (in module ggf), 26
legendrePlm () (in module ggf.sci_funcs), 29
lscov () (in module ggf-matlab_funcs), 29

Q

quadl () (in module ggf-matlab_funcs), 29

S

stress () (in module ggf.stress.boyde2009.core), 31
stress2gqgf () (in module ggf), 27
stress2legendre () (in module ggf), 27

43

	Installation
	Introduction
	What is the package “ggf” used for?
	What is an optical stretcher?
	What is the global geometric factor?
	How should I migrate my Matlab pipeline to Python?
	To reproduce data
	For a new project

	Concept and theory
	Summary
	Experimentally quantifying deformation
	Optical stress profile acting on a prolate spheroid
	cos2 approximation
	Semi-analytical perturbation approach (Boyde et al. 2009)
	Generalized Lorentz-Mie theory (Boyde et al. 2012)

	Computation of the GGF
	General approach
	Special case: cos2 approximation

	Computation of compliance

	Known issues
	Accuracy of the mode field diameter
	Method-specific differences

	Code examples
	Applications
	Creep compliance analysis

	Reproduction tests
	Radial stresses of a prolate spheroid
	Decomposition of stress in Legendre polynomials
	Object boundary: stretching and Poisson’s ratio

	Code reference
	module-level
	matlab_funcs
	sci_funcs
	stress
	stress.boyde2009
	stress.boyde2009.core
	stress.boyde2009.globgeomfact

	Changelog
	version 0.4.0
	version 0.3.4
	version 0.3.3
	version 0.3.2
	version 0.3.1
	version 0.3.0
	version 0.2.0
	version 0.1.0

	Bilbliography
	Indices and tables
	Bibliography
	Python Module Index
	Index

